

Guide to

The BASIC 4.5
For the Commodore C64

Tümmers, Robert

23.8.2022

C64 BASIC 4.5 MANUAL

1

a BASIC extension for the C64
by Janne Peräaho & Anders Persson – the BASIC 3.5 part

by Robert Tümmers (DG5KR) – the BASIC 4.5 part

Table of contents
Introduction ... 2

COMMANDS and STATEMENTS ... 3

Operators ..13

Reserved Variables ..13

BASIC Error Messages ...14

DISK Error Messages..16

PETascii codes ..19

Musical note table ...20

Special particularities of BASIC 4.5 ...21

TEDMON ..22

The improved BASIC programming Editor ...24

BASIC 4.5 storage locations...25

BASIC 4.5 vector map ..27

BASIC 4.5 Tokenlist ..28

Thanksgivings and Acknowledgments ...29

Room for additions ...30

COPYRIGHT

 Commodore BASIC, version 3.5. Copyright © 1984 Commodore Electronics Limited.

 Commodore BASIC, version 3.5. Copyright © 1977 Microsoft.

C64 BASIC 4.5 MANUAL

2

Introduction
Basic is a high level language which is based on the following six concepts:

commands, statements, functions, variables, operators, and expressions.

BASIC 4.5 is a merged product from M&T 64er, 1990/06 –„Ein basic für alle“

by Michael Schimek (BASIC 3.5 on C64). The BASIC 4.5 -Extend the BASIC 3.5 for

C64 by Robert Tümmers (DG5KR) in 2020.

Commands and statements are instructions to the computer to perform a certain

task (for FORMAT an instruction to load a basic program into memory). The

difference between them is that Basic commands are intended to be used in

direct mode, while statements should be used in programs. However, in most

cases commands can be used as statements in a program if you prefix them with

a line number. You can also use several statements as commands by using them

in direct mode (i.e. without line numbers).

A function performs a simple task, based on a given argument, and it always

replies with a value - a result.

Operators are used for calculations, for determining equalities/inequalities, and

for logical operations. For FORMAT + is an operator used for addition.

Expressions are clauses composed of constants, variables, and/or operators. For

FORMAT A+B*3 is a valid expression.

This manual's purpose is to provide detail information about presented Basic

elements. I hope you find it useful.

C64 BASIC 4.5 MANUAL

3

COMMANDS and STATEMENTS
Command Description FORMAT or EXAMPLES D/P*

‘ 1. Attaches a note to the source code.

2. The ‘ is the target for CALL and JUMP

command. Replaces GOSUB and GOTO.

‘Notes, Remarks and Text
‘TARGET NAME for JUMP or CALL

ASK Alternative to the INPUT command. More flexible ASK [“optional prompt”,]VR$
 -or-
ASK "Your Prompt",CRSR,FMT,LEN,VR$
 | | | | +-> string Variable
 | | | +-----> length of input
 | | +---------> 0=all Chars,1=A-Z,2=0-9
 | +-------------> 0=No cursor,>32=cursorform
 +-------------------> The prompt.

AT position the cursor on screen AT 0,20 - Set the cursor in row 0 and column 20.

AUTO automatic line numbering AUTO 10 Automatically numbers line in increments of ten. D

BACKUP Copies all the files on a disk to another disk BACKUP DO TO D1 ON U9 Copies disk from drive 0 to drive 1 in
disk drive unit 9.

BEGINBLOCK Define a Command block. The block executes only

if condition is true. (See also ENDBLOCK)

BEGINBLOCK [any condition]
:INPUT “ENTER STRING: “;A$
:BEGINBLOCK A$=”E”
 :PRINT “EXECUTE BLOCK IF A$<>E”
ENDBLOCK

P

BEEP Sounds a short system beep BEEP

BOX Draws a rectangle BOX [<color_src>],<left>,<top>[,<right>,<bottom>]
[,<angle>[,<fill_flag>]

CALL Acts like a GOSUB. A name (max. 16 characters) is

used instead of a line number. The goal is the

apostrophe with the name. A RETURN jumps back

and jumps to the next line.

CALL “TARGET” or T$=”TARGET”:CALL T$
The target looks like this:
‘TARGET
[Next line…]

C64 BASIC 4.5 MANUAL

4

CATALOG List the disk directory page by page in a user

friendly format for direct cursor position and

operation.

CATALOG [U]8…[U]11

CHAR Prints string on a screen CHAR [<color_src>],<left>,<top>,"<string>"[,<reverse_flag>]

CIRCLE Draws a circle, ellipse, arc, triangle or an octagon CIRCLE
[<color_src>][,<x>,<y>],<x_radius>[,[<y_radius>][,[<s_angle>]

CLOSE Closes an open logical file CLOSE <file nr>

CLR Erases any variables in memory CLR

CLS Clear the screen and delete all set screen window.

SCNCLR cleans only inside a screen window. CLS

unset the screen window and clear the hole screen.

CLS

CMD Redirects output CMD <l_file>[,<w_list>]

COLLECT Deletes references to improperly closed files COLLECT D0 ON U8

COLOR Assigns a color to the color source <color_src>,<color>[,<luminance>]

COPY Copies a file COPY [D0,]"FILEOLD" TO [D1],”FILENEW"[,U9]

CONT Re-start the execution of a program that has been

stopped

CONT D

DATA Declares data items DATA <item>[[,<item>][,<...>[,<item>]]] P

DEF FN Defines a function DEF FN <fnc_name>(<variable>)=<expression> P

DELAY Hold the execution for 1/50 (NTSC:1/60) * N seconds DELAY [N] N is an 16 bit unsigned integer number

DELETE Deletes lines of BASIC text DELETE [<first_line>][-<last_line>]

DIM Presents and reserves memory for an array DIM [<variable>(<subscripts>)][,<...>]] P

DIRECTORY Displays a disk directory DIRECTORY [D0][,U8][,"<file>"] (See CATALOG)

DLOAD Loads a program from disk into a memory DLOAD "<file>"[,D<drive>][,U<unit>]

DLRUN Load and run a basic program from disk. DLRUN “PROGNAME”

DO Defines a program loop DO [UNTIL <bool_arg>|WHILE <bool_arg>] <statements> [EXIT]
LOOP [UNTIL <bool_arg>|WHILE <bool_arg>]

P

DRAW Draws dots, lines, and shapes DRAW [<color_src>][<x>,<y>,][[,]TO <x>,<y>][,<...>[,<x>,<y>]]

DSAVE Stores a program on disk DSAVE "@<file>"[,D<drive>][,U<unit>]
@ = OVERWRITE PROGRAM ON DISK

END Stops program execution END

C64 BASIC 4.5 MANUAL

5

ENDBLOCK Set the end of a BEGINBLOCK (See also

BEGINBLOCK)

ENDBLOCK

P

FILES Read all files from directory and store then into a

string array

FILE V$(0),I,[U]8
10 cls
20 clr
30 files v$(0),i,8
40 print "count of files:",i
50 for x=1 to i
60 :print v$(x)
70 next x

FIND Find BASIC Command or any Text and List line

number or BASIC line.

FIND GOTO,1 - show all lines with the GOTO Command.
FIND RETURN - show only line number with RETURN.
FIND “AUTOR” - Show all Lines with the text “AUTOR”

FOR Defines a program loop FOR <loop_var>=<start_val> TO <end_val> [STEP <increment>]

FRAME Draw a text frame FRAME X1,Y1,X2,Y2,FRAME COLOR,FRAME TYPE [0-2],”TEXT”

GET Gets data from the keyboard GET <variable>

GET# Gets data from a file or a device GET# <file>,<variable>

GETKEY Gets data from the keyboard GETKEY <variable>

GOSUB Calls a subroutine GOSUB <line>

GOTO Redirects program execution GOTO <line>

GRAPHIC Change the Graphic mode GRAPHIC <mode>[,<clr_flag>]
0 normal text
1 high-resolution graphics
2 high-resolution graphics, split screen
3 multicolor graphics
4 multicolor graphics, split screen
<clr_flag> - screen clear flag (0=off, 1=on)

GSHAPE Displays a shape on a graphic screen GSHAPE <shape>[,[<x>,<y>][,<mode>]]
<shape> - string variable containing a shape to be drawn
<x> - scaled x coordinate. The default display position is the
pixel cursor
<y> - scaled y coordinate. The default display position is the
pixel cursor

C64 BASIC 4.5 MANUAL

6

<mode> - replacement mode (0-4)
0 place shape as is (default)
1 place field inverted shape
2 OR shape with area
3 AND shape with area
4 XOR shape with area

HEADER Formats a disk HEADER "<diskname>",D<drive>[,I<id>][,ON U<unit>]

HELP Displays the erroneous program line HELP D

IF Conditional execution IF <expression> THEN: <clause> [:ELSE <clause>]

INPUT Asks input from the user and stores acquired data INPUT["<prompt>";]<variable>[,<...>,<variable>]
See also ASK

INPUT# Reads data from a file or a device INPUT#<file>,<variable>[,<...>,<variable>]

KEY Assigns a string into a function key KEY [<key>,<string>]

LET Let’s a var to assign a value LET var=value (LET is optional)

LIST List one, more or all lines of your BASIC program LIST [<first_line>][-[<last_line>]]

LOAD Loads a program from storage device into a

memory

LOAD ["<file>"[,<device>][,<rel_flag>]]

LOCATE Changes graphic pixel cursor position LOCATE <x>,<y>

LTRIM Deletes all spaces at the beginning of a string LTRIM X$

MEMORY Show used and free memory of the c64. MEMORY - Shows detail memory of program, vars an arrays
MEMORY X - Store free memory to X

MONITOR Starts machine language monitor For detail information see chapter TEDMON

NEW Erases BASIC program in memory NEW

NEXT Completes a FOR loop NEXT [<variable>[,<...>,<variable>]]

NOTE Create a One-Pager info side in a editor NOTE
This command will create or modify a short mem. The memo is
restricted for one side (40+25 chars) and stored in file named
“NOTE.TXT” as SQR file. The file will be create on last use
drive. The editor supports the BASIC 4.5 ESC-commands describe
on page 24. (The improved BASIC programming Editor). The Editor
will be exit with following by Q key and finished with the
RETURN key.

C64 BASIC 4.5 MANUAL

7

ON Redirects program execution conditionally ON <expression> GOSUB <line>[,<...>,<line>]
ON <expression> GOTO <line>[,<...>,<line>]

OPEN Opens a logical file for I/O operations OPEN <file>[,<device>[,<address>[,"<command>,<type>,<mode>"]]]
INPUTS
<file> - logical file number for the file to be opened (1-255)
<device> - input/output device number
<address> - secondary address for device
<command> - command for device
<type> - file type (prg/seq/rel/usr)
<mode> - I/O mode (read/write)
Device numbers:
1 Keyboard
3 Screen
4 Printer
8-11 Disk
15 Command channel

PAINT Fills an area with color PAINT [<color_src>][,[<x>,<y>][,<mode>]]

PRINT Writes data to the screen PRINT <printlist>[;]

PRINT USING Formats and writes data to the screen, file or device PRINT[<file>,]USING <formatlist>;<printlist>

Formatlist:

Descrition Char Numeric String
Hash Sign # X X
Plus + X -
Minus - X -
Decimal Point . X -
Comma , X -
Dollar Sign $ X -
Four Carets ^^^^ X -
Equal Sign = - X
Greather Than Sign > - X

C64 BASIC 4.5 MANUAL

8

PRINT# Writes data to a file or a device PRINT#<file>,<printlist>

PUDEF Redefines PRINT USING symbols PUDEF "<definition>"
<definition> - definition string for symbols (from left to
right): the first character defines a filler
character, the second character defines a comma, the third
character defines a decimal point, and the fourth character
defines a dollar sign.
10 PUDEF "*" - Prints * in the place of blanks.
20 PUDEF " &" - Prints & in the place of commas.
30 PUDEF " .," - Prints decimal points in the place of commas,
and commas in the place of decimal points.
40 PUDEF " .,£" -Prints English pound sign in the place of $,
decimal points in the place of commas, and commas in place of
decimal points.

POKE Writes a value into a RAM memory POKE 16Bit memory,8Bit data

READ Get information from DATA statements READ <variable>[,<...>,<variable>]

REM Attaches a note to the source code REM Notes and Text

RENAME Renames a file RENAME [D<drive>,]"<old_filename>" TO
"<new_filename>"[,U<unit>]

RENUMBER Renumbers program lines RENUMBER [<new_line>[,<increment>[,<start_line>]]] D

RESTORE Reset the DATA Pointer (See DATA above) or

enable|disable the RESTORE KEY. By disable the key

is not able to interrupt a running Program or jumping

into the build in Monitor.

RESTORE [ON|OFF]

RETURN Returns from a subroutine RETURN

RTRIM Deletes all spaces at the end of a string A$=”TEXT “
RTRIM A$:PRINT A$
Output: “TEXT”

RUN Executes a program RUN [<line>]

SAVE Stores program in a storage device SAVE [<file>[,<device>[,<eot_flag>]]]

SCALE Controls bit maps scaling SCALE 0|1
SCALE 1 - turns scaling on. Coordinates may then be scaled from
0 to 1023 in both x and y rather than the normal scale values,
which are:

C64 BASIC 4.5 MANUAL

9

multicolor mode: x = 0 to 159, y = 0 to 199
high resolution mode: x = 0 to 319, y = 0 to 199

SCRATCH Deletes a file from disk SCRATCH "<file>"[,D<drive>][,U<unit>]

SCNCLR Clears the screen Clears the current screen, whether graphics,text or both.

SOUND Produces a sound SOUND <voice>,<frq_control>,<duration>
VOICE No 1-2 sounds square
VOICE No 3 sounds noise
For more information see chapter

Musical note table

SSHAPE Saves a rectangular graphic area into a string

variable

SSHAPE <shape>,<left>,<top>[,<right>,<bottom>]
SSHAPE V$,0,0 - Saves screen area from the upper left corner to
where the cursor is positioned under the name V$.

STOP Stop a running program or enable|disable the STOP

KEY

STOP [ON|OFF]
STOP OFF - RUN/STOP KEY DISABLED

SYS Executes a machine language program SYS 16Bit Address
Parameters can be passedanyway using the following memory
locations:
2034 ($07F4)= Accumulator
2035 ($07F5)= X register
2036 ($07F6)= Y register

TRAP Turns on or off error interception TRAP [<line>]
<line> - BASIC line number where program execution.

TROFF Turns trace mode off TROFF

TRON Turns trace mode on TRON

VER Show version of this BASIC extension VER

VERIFY Checks stored program against the one in memory VERIFY "<file>"[,<device>[,<rel_flag>]]

VOL Sets sound volume level VOL 0-8

WAIT Waits for a change of memory address WAIT <address>,<ctrl_value1>[,<ctrl_value2>]
<address> - memory location to be monitored (0-65535)
<ctrl_value1> - first control value (0-255)
<ctrl_value2> - second control value (0-255)

WINDOW Create a screen section as fix window. WINDOWS X1,Y1,X2,Y2

C64 BASIC 4.5 MANUAL

10

XOR 8Bit Exclusive OR XOR X,Y,S
 XOR 1,1,S -> Result 0 in S
 XOR 0,1,S -> Result 1 in S
 XOR 1,0,S -> Result 1 in S
 XOR 0,0,S -> Result 0 in S

* D = only direct Mode, P = only program Mode, blank = both (most cases)

C64 BASIC 4.5 MANUAL

11

Functions

Functions Description FORMAT D/P

¶ (PI) Returns the value of pi ¶(<dummy>)

ABS Returns the magnitude of the numeric value ABS(<number>)

ASC Returns character's ASCII code ASC(<string>)

ATN Returns arctangent ATN(<number>)

CHR$ Returns a character in the base of ASCII code CHR$(<ascii_code>)

COS Returns cosine value COS(<angle>)

DEC Converts hexadecimal number to decimal DEC(<HEXSTRING>) (0000-FFFF)

ERR$ Returns string describing error condition ERR$(<err_condition>)

EXP Raises constant e to the given power EXP(<power>)

FN Calls user-defined function FN<fnc_name>(<number>)

FREE Returns the amount of available memory FREE(Dummy)

HEX$ Converts a decimal number into a hexadecimal one HEX$(<number>)

INSTR Searches for a substring INSTR(<string_1>,<string_2>[,<start_pos>])

INT Extracts the integer portion of a decimal number INT(<number>)

JOY Polls joystick port JOY(<port>)

LEFT$ Strips string from the right LEFT$(<string>,<length>)

LEN Returns the number of characters in the string LEN(<string>)

LOG Returns the natural log of the given number LOG(<number>)

MID$ Returns a substring MID$(<string>,<start_pos>,<length>)

PEEK Gives contents of memory location (8Bit) PEEK(<address>)

POS Current cursor x position POS(<dummy>)

RCLR Returns color source's current color RCLR(<color_src>)

RDOT Returns information about the current PC location RDOT(<info_flag>)

C64 BASIC 4.5 MANUAL

12

RGR Returns current graphic mode RGR(<dummy>)

RIGHT$ Strips string from the left RIGHT$(<string>,<length>)

RLUM Returns color source's current luminance RLUM(<color_src>) -> Returns current luminance: 0-7

RND Generates a random number RND(<seed>)

SGN Returns number's sign SGN(<number>)

SIN Returns sine value SIN(<angle>)

SPC Skips over spaces SPC(<Number of spaces>)

SQR Returns the square root SQR(<number>)

STR$ Converts number into a string STR$(<number>)

TAB Sets cursor's x position TAB(<column>)

TAN Returns tangent value TAN(<angle>)

USR Executes a machine language program with a

parameter

USR(<parameter>)

VAL Converts string into a number VAL(<string>)

C64 BASIC 4.5 MANUAL

13

Operators
Operators Description

+ Addition

- Subtraction

* Multiplication

/ Division

^ raising to a power (exponentiation); ^ = up arrow

= equal to

< Less than

> Greater than

<= less than or equal to

>= greater than or equal to

<> not equal to

>< not equal to

AND Boolean AND

NOT Boolean NOT

OR Boolean OR

Reserved Variables
There are seven variable names which are reserved for use by the computer, and may not be used for another purpose.

Variables Description

DS Disk drive's status in numbers

DS$ Disk drive's status in words

EL Last error line

ER Stores error condition number (See BASIC Error Messages)

ST ST is a status variable for input / output. The value depends on the results of the last input/output operation.

TI Clock value in 1/60 in a seconds

TI$ Current time in format of “HHMMSS”

C64 BASIC 4.5 MANUAL

14

BASIC Error Messages
These error messages are printed by BASIC. You can also PRINT the messages through the use of the ERR$ function.

Error number Message Description

1 TOO MANY FILES There is a limit of 10 files OPEN at one time.

2 FILE OPEN An attempt was made to open a file using the number of an already open file.

3 FILE NOT OPEN The file number specified in an I/O statement must be opened before use.

4 FILE NOT FOUND No file with that name exists (disk).

5 DEVICE NOT PRESENT The required I/O device not available.

6 NOT INPUT FILE An attempt made to GET or INPUT data from a file that was specified as output only.

7 NOT OUTPUT FILE An attempt made to send data to a file that was specified as input only.

8 MISSING FILE NAME An OPEN, LOAD, or SAVE to the disk generally requires a file name.

9 ILLEGAL DEVICE NUMBER An attempt made to use a device improperly (SAVE to the screen, etc.).

10 NEXT WITHOUT FOR Either loops are nested incorrectly, or there is a variable name in a NEXT

statement that does not correspond with one in a FOR.

11 SYNTAX ERROR A statement is unrecognizable by BASIC. This could be because of

missing or extra parenthesis, misspelled keyword, etc.

12 RETURN WITHOUT GOSUB A RETURN statement encountered when no GOSUB statement was

active.

13 OUT OF DATA A READ statement encountered, without data left unREAD.

14 ILLEGAL QUANTITY A number used as the argument of a function or statement is outside the

allowable range.

15 OVERFLOW The result of a computation is larger than the largest number allowed

(1.701411833E+38).

16 OUT OF MEMORY Either there is no more room for program and program variables, or here

are too many DO, FOR, or GOSUB statements in effect.

17 UNDEF'D STATEMENT A line number referenced does not exist in the program.

C64 BASIC 4.5 MANUAL

15

18 BAD SUBSCRIPT The program tried to reference an element of an array out of the range

specified by the DIM statement.

19 REDIM'D ARRAY An array can only be DIMensioned once. If an array is referenced before

that array is DIM'd, an automatic DIM (to 10) is performed.

20 DIVISION BY ZERO Division by zero is not allowed.

21 ILLEGAL DIRECT INPUT or GET statements are only allowed within a program.

22 TYPE MISMATCH This occurs when a number is used in place of a string or vice-versa.

23 STRING TOO LONG A string can contain up to 255 characters.

24 FILE DATA Bad data read from a tape.

25 FORMULA TOO COMPLEX Simplify the expression (break into two parts or use fewer parentheses).

26 CAN'T CONTINUE The CONT command does not work if the program was not RUN, there

was an error, or a line has been edited.

27 UNDEF'D FUNCTION A user defined function referenced that was never defined.

28 VERIFY The program on tape or disk does not match the program in memory.

29 LOAD There was a problem loading. Try again.

30 BREAK The stop key was hit to halt program execution.

31 CAN'T RESUME A RESUME statement encountered without TRAP statement in effect.

32 LOOP NOT FOUND The program has encountered a DO statement and cannot find the

corresponding LOOP.

33 LOOP WITHOUT DO LOOP encountered without a DO statement active.

34 DIRECT MODE ONLY This command is allowed only in direct mode, not from a program.

35 NO GRAPHICS AREA A command (DRAW, BOX, etc.) to create graphics encountered before

the GRAPHIC command was executed.

36 BAD DISK An attempt failed to HEADER a disk, because the quick header method

(no ID) was attempted on an unformatted disk, or the disk is bad.

C64 BASIC 4.5 MANUAL

16

DISK Error Messages
Error number Message Description

20 Block header not found. The disk controller is unable to locate the header of the requested data block.

Caused by an illegal sector number, or the header has been destroyed.

21 No sync character. The disk controller is unable to detect a sync mark on the desired track. Caused by

misalignment of the read/write head, no disk is present, or unformatted or improperly

seated disk. Can also indicate a hardware failure.

22 Data block not present. The disk controller has been requested to read or verify a data block that was not

properly written. This error message occurs in conjunction with the BLOCK commands

and indicates an illegal track and/or sector request.

23 Checksum error in data

block.

This error message indicates that there is an error in one or more of the data types.

The data has been read into the DOS memory, but the checksum over the data is in

error. This message may also indicate grounding problems.

24 Byte decoding error. The data or header has been read into the DOS memory, but a hardware error has

been created due to an invalid bit pattern in the data byte. This message may also

indicate grounding problems.

25 Write-verify error. This message is generated if the controller detects a mismatch between the written

data and the data in the DOS memory.

26 WRITE PROTECT ON This message is generated when the controller has been requested to write a data

block while the write protect switch is depressed. Typically, this is caused by using a

disk with a write protect tab over the notch.

27 Checksum error in header. The controller has detected an error in the header of the requested data block. The

block has not been read into the DOS memory. This message may also indicate

grounding problems.

28 Too long data block. The controller attempts to detect the sync mark of the next header after writing a

data block. If the sync mark does not appear within a pre-determined time, the error

message is generated. The error is caused by a bad disk format (the data extends

into the next block), or by hardware failure.

C64 BASIC 4.5 MANUAL

17

29 DISK ID MISMATCH This message is generated when the controller has been requested to access a disk

which has not been initialized. The message can also occur if a disk has a bad

header.

30 Error in general syntax. The DOS cannot interpret the command sent to the command channel.

31 Invalid command. The DOS does not recognize the command. The command must start in the first

position.

32 Invalid command. The command sent is longer than 58 characters.

33 Invalid file name. Pattern matching is invalidly used in the OPEN or SAVE command.

34 SYNTAX ERROR No file given. The file name was left out of a command or the DOS does not

recognize it as such. Typically, a colon (:) has been left out of the command.

39 Invalid command. This error may result if the command sent to command channel (secondary address

15) is unrecognized by the DOS.

50 RECORD NOT PRESENT Result of disk reading past the last record through INPUT#, or GET# commands. This

message will also occur after positioning to a record beyond end of file in a relative

file. If the intent is to expand the file by adding the new record (with a PRINT#

command), the error message may be ignored. INPUT or GET should not be

attempted after this error is detected without first repositioning.

51 OVERFLOW IN RECORD PRINT# statement exceeds record boundary. Information is truncated. Since the

carriage return which is sent as a record terminator is counted in the record size, this

message will occur if the total characters in the record (including the final carriage

return) exceeds the defined size.

52 FILE TOO LARGE Record position within a relative file indicates that disk overflow will result.

60 WRITE FILE OPEN This message is generated when a write file that has not been closed is being

opened for reading.

61 FILE NOT OPEN This message is generated when a file is being accessed that has not been opened

in the DOS. Sometimes, in this case, a message is not generated; the request simply

ignored.

62 FILE NOT FOUND The requested file does not exist on the indicated drive.

63 FILE EXISTS The file name of the file being created already exists on the disk.

64 FILE TYPE MISMATCH The file type does not match the file type in the directory entry for the requested file.

C64 BASIC 4.5 MANUAL

18

65 NO BLOCK This message occurs in conjunction with the B-A command. It indicates that the

block to be allocated has been previously allocated. The parameters indicate the

track and sector available with the next highest number. If the parameters are zero

(0), then all blocks higher in number are in use.

66 ILLEGAL TRACK AND

SECTOR

The DOS has attempted to access a track or block which does not exist in the format

being used. This may indicate a problem reading the pointer to the next block.

67 ILLEGAL SYSTEM T OR S This special error message indicates an illegal system track or sector.

70 NO CHANNEL The requested channel is not available, or all channels are in use. A maximum of five

sequential files may be opened at one time to the DOS. Direct access channels may

have six opened files.

71 DIRECTORY ERROR The BAM (Block Availability Map) does not match the internal count.

There is a problem in the BAM allocation or the BAM has been overwritten in DOS

memory. To correct this problem reinitialize the disk to restore the BAM in memory.

Some active files may be terminated by the corrective action.

72 DISK FULL Either the blocks on the disk are used or the directory is at its entry limit. DISK FULL is

sent when two blocks are available on the 1541 to allow the current file to be closed.

73 DOS MISMATCH DOS 1 and 2 are read compatible but not write compatible. Disks may be

interchangeably read with either DOS, but a disk formatted on one version cannot

be written upon with the other version because the format is different. This error is

displayed whenever an attempt is made to write upon a disk which has been

formatted in a non-compatible format. (A utility routine is available to assist in

converting from one format to another.) This message may also appear after power

up.

C64 BASIC 4.5 MANUAL

19

PETascii codes

C64 BASIC 4.5 MANUAL

20

Musical note table
A - sound register value 7 use the 7 as a second number after the SOUND command - SOUND 1,7,30.

NOTE REGISTER

(PAL)

REGISTER

(NTSC)

FREQUENCY

(Hz)

NOTE REGISTER

(PAL)

REGISTER

(NTSC)

FREQUENCY

(Hz)
A 7 7 110.0 #F 873 873 740.0

#A 64 64 116.6 G 881 881 784.0

H 118 118 123.5 #G 889 889 830.7

C 169 169 130.9 A 897 897 880.0

#C 217 217 138.6 #A 904 904 932.4

D 262 262 146.9 H 911 911 987.8

#D 305 305 155.6 C 917 917 1046.6

E 345 345 164.9 #C 923 923 1108.8

F 383 383 174.7 D 929 929 1174.7

#F 419 419 185.0 #D 934 934 1244.6

G 453 453 196.0 E 939 939 1318.6

#G 485 485 207.7 F 944 944 1397.0

A 516 516 220.0 #F 948 948 1480.0

#A 544 544 233.1 G 953 953 1568.0

H 571 571 247.0 #G 957 957 1661.3

C 596 597 261.7 A 960 960 1760.0

#C 620 621 277.2 #A 964 964 1864.7

D 643 643 293.7 H 967 967 1975.6

#D 664 665 311.2 C 971 971 2093.0

E 685 685 329.7 #C 974 974 2217.5

F 704 704 349.3 D 976 976 2349.4

#F 722 722 370.0 #D 979 979 2489.1

G 739 739 392.0 E 982 982 2637.1

#G 755 755 415.4 F 984 984 2793.9

A 770 770 440.0 #F 986 986 2960.0

#A 784 784 466.2 G 988 988 3136.0

H 798 798 493.9 F 864 864 698.5

C 810 810 523.3 E 854 854 659.3

#C 822 822 554.4 #D 844 844 622.3

D 834 834 587.4

C64 BASIC 4.5 MANUAL

21

Special particularities of BASIC 4.5
After BASIC 4.5 has started, it is checked whether a program with the name "BOOT" is on drive 0, unit 8. If so, it will be loaded and

executed.

If a RTC module DS12C887 with base address $DE00 is present, then BASIC 4.5 will set TI and TI$ automatically after each start process.

The “IF THEN” problem

Please use a colon (:) after each THEN to prevent a SYNTAX ERROR. That means:

NO: -> IF A=1 THEN CLS This occurs a SYNTAX ERROR

YES: -> IF A=1 THEN: CLS That’s working perfect.

Usually a colon can always be placed after a THEN

C64 BASIC 4.5 MANUAL

22

TEDMON
After the start is shown this message:

 pc sr ac xr yr sp nv-bdizc

; 0000 31 20 28 06 f5 00110001

The first line names the CPU registers and the second shows their current content. The abbreviations in the register line mean:

• PC: Program Counter; memory address of the next assembler command

• SR: Content of Status Register

• AC: Content of ACcumulator

• XR: Content of X-index Register

• YR: Content of Y-index Register

• SP: Content of Stack Pointer

• IRQ: Interrupt vector

The following commands can used:

• A - Assemble a mnemonics line into machine code.
▪ A <address> <command> [<operand>]

• B – Bank toggle ROM and RAM view for memory dump and disassembler.

▪ B[:VIEW TO RAM|ROM]

• C - Compare two memory aeras and displays the difference.
▪ C <start address> <end address> <start address for comparing>

• D - Disassemble a machine code line into mnemonics.

▪ D [<start address > [<end address>]]

• F - Fill up a memory aera with the given byte.
▪ F <start address> <end address> <Byte>

https://www.c64-wiki.com/wiki/Program_Counter
https://www.c64-wiki.com/wiki/Status_Register
https://www.c64-wiki.com/wiki/accumulator
https://www.c64-wiki.com/wiki/X_index_register
https://www.c64-wiki.com/wiki/Y_index_register
https://www.c64-wiki.com/wiki/Stack_Pointer
https://www.c64-wiki.com/wiki/IRQ
https://www.c64-wiki.com/wiki/mnemonic
https://www.c64-wiki.com/wiki/machine_code

C64 BASIC 4.5 MANUAL

23

• G - Go to the memory address, also start a machine code program at the inputed memory address.
▪ G <address>

• H - Hunt a memory aera - Durchsucht Speicherbereich nach einen bestimmten Wert und zeigte alle gefundenen Speicherstellen an

▪ H <start address> <end addressee> <datas> (datas are hexadecimal numbers separated with empty spaces and strings
separated with the prefix apostrophe (').)

• L - Load a file from disk or datasette into the memory.
▪ L "<filename>",<device number ($1-$F)>,<load memory address at C128>

• M - Memory is showing in hexadecimal numbers and values.

▪ M [<start address> [<end address>]] (by using this command without addresses the first 12 lines are shown.)

• R - Registers is shown again.

• S - Save the inputed memory aera into a file on disk or datasette.
▪ S "<file name>",<device number>,<start address>,<end adress+1>

• T - Transfer) or copy a memory aera into another.

▪ T <start address> <end address> <destination address>

• V - Verify a saved file on disk or datasette with the memory aera.
▪ V "<file name>",<device number ($1-$F)>,<start address>

• X - eXit TEDMON into BASIC direct mode.

• > - Modify one until eight bytes in a memory address (after M command).

▪ > <address> <byte1> <byte2> ... <byte8>

• . - Works same like the A command
• ; - Change the register content (after R command)

TEDMON hasn't a input prompt! Only a blinking cursor is shown that the machine code monitor is ready.

If a wrong input is done (unknown command) a question remark ? appears.

https://www.c64-wiki.com/index.php?title=strings&action=edit&redlink=1
https://www.c64-wiki.com/wiki/disk
https://www.c64-wiki.com/wiki/datasette
https://www.c64-wiki.com/index.php?title=filename&action=edit&redlink=1
https://www.c64-wiki.com/wiki/device_number
https://www.c64-wiki.com/wiki/hexadecimal
https://www.c64-wiki.com/wiki/disk
https://www.c64-wiki.com/wiki/datasette
https://www.c64-wiki.com/wiki/direct_mode
https://www.c64-wiki.com/index.php?title=prompt&action=edit&redlink=1
https://www.c64-wiki.com/index.php?title=cursor&action=edit&redlink=1

C64 BASIC 4.5 MANUAL

24

The improved BASIC programming Editor
The BASIC Editor has some improved functions to edit your program code.

Editor shortcuts: The scrolling functions for BASIC code lines:
Cancel quote and insert mode ESC O

Cancel started Esc code ESC X

Erase to end of current line ESC Q

Erase to start of current line ESC P

Move to start of current line ESC J

Move to end of current line ESC K

Enable auto-insert mode ESC A

Disable auto insert mode ESC C

Delete current line ESC D

Insert line ESC I

Enable scrolling ESC M

Disable scrolling ESC L

Scroll up ESC V

Scroll down ESC W

(It is useful with the WINDOW command. See page 9)

Set bottom of screen window ESC B

Set top of screen window ESC T

Set window to full screen minus 1 and clear ESC R

Set window to full screen and clear screen ESC N

This useful function will be scrolling your code over your screen.

The cursor down or cursor up shows the BASIC lines. If the listing is

more than 24 lines, it will automatically scroll up or down the code

lines.

C64 BASIC 4.5 MANUAL

25

BASIC 4.5 storage locations
The most important storage locations

0000-00d8 as in Basic v2
00d9-00da Pointer: Color RAM for the current line
00db-00dc Pointer: FlashRAM for the current line
00dd-00de auxiliary pointers for screen scrolling etc.
00df color parameters for graphic commands
00e0-00e1 Pointer to bitmap for graphics commands
00e2-00e5 temporarily for Basic commands
00e6 Value of the PCR with I/O-RAM
00e7 Value of the PCR with RAM (for editor)
00e8 current graphics mode
00e9 Flag: program is running (> 127 = yes)
00ea Flag: Flashing allowed (0 = yes)
00eb-00ef not used
00f0 Flag: CTRL-S printed (0 = no)
00f1-00f2 Pointer: Monitor address
00f3-00f4 Pointer: Monitor address
00f5-00f6 Pointer: Keyboard table
00f7-00f8 Pointer: RS232 input buffer ($0600)
00f9-00fa Pointer: RS232 output buffer ($0500)
00fb-00fe not used
00ff FLPT string conversion
0100-02a1 as in Basic v2
02ad-02ae last graphic position x
02af-02b0 last graphic position y
02b1-02b2 target coordinate x
02b3-02b4 target coordinate y
02b5-02b6 ABS(x)
02b7-02b8 ABS(y)
02b9-02ba SGN(x)
02bb-02bc SGN(y)
02bd-02c4 different pointers for graphics routines
02c5 angle, sign
02c6-02c7 SIN(angle)

02c8-02c9 COS(angle)
02ca-02cb angular distance
02cd Beginning of the number string (USING)
02ce End of the number string
02cf dollar flag
02d0 comma flag
02d1 counter
02d2 exponent, sign
02d3 pointer to exponent
02d4 places of the decimal point in the number string
02d5 adjustment flag
02d6 digits before the decimal point in the format string
02d7 decimal places in the format string
02d8 Sign flag in the format string
02d9 exponent flag
02db character counter
02dc Sign flag in the number string
02dd Flag for >> * << and full characters
02de pointer: start of field
02df Length of the format string
02e0 Pointer: end of field
02e4 Pointer to character set (high) for CHAR
02e5 temporarily for GSHAPE
02e6 Flag: SCALE (0 = off)
02e7 Flag: WIDTH (double pixel size; 0 = no)
02e8 Flag: fill BOX
02e9 temporarily for bit mask
02ea string length
02eb Flag: TRACE (0 = off)
02ef temporarily for graphics
02f1 Flag: parameter relative or absolute (= 0)
02f2 current background color (including luminance)
02f3 dot color for graphics

C64 BASIC 4.5 MANUAL

26

02f4 multicolor 1
02f5 multicolor 2
02f6 frame color
02f7 temporarily for X-reg. (B.editor)
02f8 temporarily for flash code (B.editor)
02f9 last graphic column (39)
02fa last graphic line (24)
02fb temporarily for X-Reg. (Monitor)
0300-03ff as in Basic V2, but vectors changed
0400-043f buffer for monitor
0400-040f Filename 1 for DOS
0410-0413 Pointer: Filename 1/2
0414-0415 length of filename 1/2
0416-0417 number of drive 1/2
0418-0419 ID byte 2, 1
041a Flag: ID specified
041b buffer for command string
0450 Length of DS $ (0: DS $ not in memory)
0451-0478 DS $
0479-047a Step size for AUTO (0 = Off)
047b Flag: Graphics area reserved (0 = no)
047c Flag: HELP
0480-0498 Row link table
04e7-04ea characters for USING (PUDEF)
04eb-04ee temporarily for INSTR
04ef last error number
04f0-04f1 error line number
04f2-04f3 TRAP line number

04f4 temporarily for error handling
04f5-04f6 temporarily for TRAP
04f7 Stack pointer before fault
04f8-04f9 DO address
04fa-04fb DO line number
04fc-04fd pitch / length low
04fe-04ff pitch / length high
0500 buffer for RS232 (output)
0508 Flag: RAM initialized ($a5 = yes)
0509-0521 Table: Screen line addresses (low)
0522-053a Table: Screen line addresses (high)
053c Flag: Output flashing characters (0 = no)
054b-055c Monitor work area
055d Counter for function keys
055e Pointers for function keys
055f-0556 Length of the function key strings
0567-05f0 Memory for function key strings
0600-0700 buffer for RS232 (input)
07e5-07e8 lower, upper, left, right edge of windows
07e9 Flag: Scrolling (bit 7) and line linking (6)
each: 0 = allowed
07ea Flag: Auto insert (0 = off)
07eb last character output
07ec-07ed temporarily for screen editor
07f7 Flag: CTRL-S (0 = allowed)
07f8 memory view for monitor (0 = ROM, 128 = RAM)
07fd auxiliary counter for system clock TI$

C64 BASIC 4.5 MANUAL

27

BASIC 4.5 vector map
List of changed vectors

Vector V2.0 (*) V3.5 (**) V4.5 (***) Description

$28F - $290 $EB48 $CA18 SE_GETKEY Vector: Key table

$300 - $301 $E38B $C2F2 $C2F2 Vector: error messages

$302 - $303 $A483 $C43C $C43C Vector: Execution address of BASIC idle loop

$304 - $305 $A57C $C494 MYTOKENIZER Vector: text to token (tokenizer)

$306 - $307 $A71A $C533 MYDETOKENIZER Vector: token to text (de-tokenizer)

$308 - $309 $A7E4 $C3A1 MYDISPATCH Vector: exec next statement (token dispatcher)

$30A - $30B $AE86 $C5D7 $C5D7 Vector: evaluate next term

$314 - $315 $EA31 $C160 $C160 Vector: hardware interrupt (IRQ)

$316 - $317 $FE66 $C070 BRKHANDLER Vector: BRK-interrupt

$318 - $319 $FE47 $C160 RESTOREHANDLER Vector: non maskable interrupt (NMI)

$31A - $31B $F34A $CCB7 $CCB7 Vector: KERNAL OPEN (F40A)(F34A)

$31C - $31D $F291 $CC8D $CC8D Vector: KERNAL CLOSE

$324 - $325 $F157 $CB58 $CB58 Vector: KERNAL CHRIN routine; INPUT

$326 - $327 $F1CA $CBE7 $CBE7 Vector: KERNAL CHROUT routine

$32A - $32B $F13E $CA85 $CA85 Vector: KERNAL GETIN routine; GET

$32E - $32F $FE66 $C070 $C070 Vector: Vector to User-Defined Command. Currently: wart start

$330 - $331 $F49E $CC10 $CC10 Vector: KERNAL LOAD-Routine / RAM LOAD (F4A5)

$332 - $333 $F5DD $CD80 $CD80 Vector: KERNAL SAVE-Routine / RAM SAVE (F5ED)

*: V2.0 Kernal Version / **: Version by M. Schimek / ***: Version by DG5KR

https://www.c64-wiki.de/wiki/IRQ
https://www.c64-wiki.de/wiki/BRK
https://www.c64-wiki.de/wiki/NMI

C64 BASIC 4.5 MANUAL

28

BASIC 4.5 Tokenlist
All BASIC 4.5 Token are 2 Byte tokens. The “Mastertoken” is 7F.

Keyword Token Keyword Token

AT 7F 01 RESTORE 7F 0F

CLS 7F 02 RTRIM 7F 10

NOTE 7F 03 LTRIM 7F 11

VERSION 7F 04 XOR 7F 12

FRAME 7F 05 ‘ 7F 13

CATALOG 7F 06 DELAY 7F 14

MEMORY 7F 07 BEEP 7F 15

STOP 7F 08 CALL 7F 16

WINDOW 7F 09 JUMP 7F 17

DLRUN 7F 0A ASK 7F 18

FIND 7F 0B TEST (for debugging only) 7F 19

FILES 7F 0C n/a (for future use) 7F 1A

BEGINBLOCK 7F 0D n/a (for future use) 7F 1B

ENDBLOCK 7F 0E n/a (for future use) 7F 1C

C64 BASIC 4.5 MANUAL

29

Thanksgivings and Acknowledgments

This program was not possible without the support of www.FORUM64.de and its members. Therefore, my great thanks go to all the tireless,

patient and friendly helpers. THANK YOU!

C64 BASIC 4.5 MANUAL

30

Room for additions
Use this page for your own notice

Keyword Description

